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Biomathematics and 
Statistics Scotland
David A. Elston

Biomathematics and Statistics Scotland (BioSS; www.bioss.ac.uk) is a specialist organisation 

delivering consultancy, training and research in statistics, mathematical modelling and 

bioinformatics.  BioSS forms a distinctive element of SCRI Group and plays a unique role in the 

Scottish research community, bridging the gap between research in the mathematically-based 

and traditionally more qualitative sciences such as biology. 

BioSS manages its consultancy work under four broad 

scientifi c areas: 

- plant science

- animal health and welfare 

- ecology and environmental science 

- human health and nutrition.  

In each area, BioSS staff have a wide range of different 

types of interaction with scientists, ranging from the 

provision of short pieces of advice that allow BioSS 

expertise to guide a large number of scientifi c research 

projects, through to a smaller number of deep, 

collaborative relationships.

Our ability to support a large portfolio of projects in these 

four application areas is greatly enhanced by our training 

courses in quantitative methodologies. These courses 

increase the understanding and computational abilities 

of our collaborators, enabling them to perform many 

analyses with minimal guidance and to discuss their 

projects with BioSS consultants at a higher level.

BioSS manages its programme of applied strategic 

research in three broad themes:

- statistical bioinformatics

- systems and process modelling

- statistical methodology.

The research we carry out addresses generic issues 

encountered in our consultancy work that are not 

adequately addressed using standard methods. Each 

research theme is related to each of our four broad 

scientifi c application areas, demonstrating the wide 

applicability of BioSS research.
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BioSS inputs to microarray experiments (Christine 

Hackett, Chris Glasbey, Graham Horgan, Mizanur Khondoker, 

Claus-Dieter Mayer & Jim McNicol) 

Microarrays are one of the many remarkable tools that 

enable to us to probe ever deeper into the molecular 

activity taking place within the cells of all living 

organisms.  Whilst microarray technology continues to 

advance, the quantitative issues raised are generic, and 

the progress we have made in addressing these issues 

demonstrates the interplay between BioSS research 

and consultancy. To simplify the exposition, we consider 

two colour microarrays, each of which contains spots 

of cDNA from 10,000s of genes.  Extracts from two 

samples (for example, individual plants or bacterial 

cultures) are applied to every spot on a given array, and 

the intensity of colour of each of two dyes on these 

spots records the levels of gene expression associated 

with each sample.  The samples can be chosen to 

allow us to fi nd out about expression levels associated 

with particular types of individuals (different varieties, 

experimental treatment groups, or varying according 

to a quantitative trait such as weight).  Irrespective 

of the many variations, microarrays enable scientists 

to measure the expression of thousands of genes 

simultaneously, leading to enormously high dimensional 

data, posing challenges for design and analysis that 

have been addressed in complementary ways by BioSS 

staff in Edinburgh, Aberdeen and Dundee.

Design Differences in expression levels between pairs of 

samples applied to the same array are estimated much 

more precisely than differences between arrays, hence 

a key decision in the design of two colour microarrays 

is the specifi cation of such pairs.  Early experiments 

favoured the so-called reference design in which all 

samples were compared to a single reference or control 

sample (for example, [A,R], [B,R], [C,R]). As this only 

allows indirect comparison of pairs not including the 

reference sample (for example, [A,B]), more general 

designs like loop designs (for example, [A.B], [B,C]…

[Z,A]) have also been used which allows some 

comparisons to be estimated with increased precision.

Our work on the design of microarray studies has been 

to capitalise on information about the samples in two 

different settings. The fi rst setting is where we have 

measured a single quantitative trait on each sample 

and wish to estimate a linear regression between trait 

values and expression level. We have demonstrated 

the benefi ts of ranking the samples in both directions 

(highest to lowest and lowest to highest), then 

constructing a loop design which uses pairs of 

approximately the same rank in the opposite direction. 

Furthermore, we have established the situations in 

which additional replication of samples with extreme 

trait values, at the expense of samples with trait values 

close to the mean, can be benefi cial.

The second setting is where we have information 

about a large number of genetic markers for each 

sample. We have investigated the construction of 

distant pair designs in which the aggregate number of 

discrepancies between markers within pairs is as large 

as possible.  We have written a computer programme 

to optimise this criterion for a barley population, using 

simulated annealing.

Preprocessing Microarray data in raw form almost 

inevitably contain artefacts due to imperfections in 

the technology which, if not addressed properly, can 

obscure biological signals. Preprocessing is therefore 

a key step in analysis, which BioSS has advanced 

through combining multiple laser scans and using 

nonparametric methods for normalisations.

Figure 1  Example of rescaled multiple scan data with 
fitted nonlinear functional regression model shown by solid 
lines. Data from different scans with incremental PMT 
settings are related nonlinearly due to variant amounts of 
signal saturation. 
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Combining multiple scans Expression data for analysis 

are typically derived from a single laser scan of each 

hybridised cDNA microarray. However, because weakly 

expressed genes are better measured at high photo-

multiplier tube (PMT) gain settings and highly expressed 

genes at low settings (Fig. 1), there are benefi ts in 

combining scans to obtain more sensitive data across 

the range of expression levels. We have developed a 

nonlinear functional regression model with errors based 

on the heavy-tailed Cauchy distribution for robustly 

estimating gene expression. Software is available via a 

web interface: www.bioss.ac.uk/ktshowcase/create.cgi

Normalisation is the process of removing systematic 

variation so that data from different microarrays are 

on a common scale. There are two main aspects: 

location normalisation to remove biases in mean 

expression levels, and scale normalisations to remove 

differences in the spread of observed expressions for 

given mean values. Typically, nonparametric methods 

such as loess are used for location normalisation 

and parametric transformations such as arcsinh for 

variance stabilisation. However as can be seen in Fig. 

2a, patterns of variation are typically too complex to be 

adequately modelled parametrically. 

We proposed a new normalisation method using a 

generalised additive model for location, scale and 

shape (GAMLSS; Fig. 2b).  Simulation studies show that 

GAMLSS normalisation yields more powerful inference 

of differential expression than the standard parametric 

method.

Analysis The fi rst analysis step following the 

normalisation is to fi nd genes that exhibit evidence for 

differential expression. The standard statistical approach 

here is to apply a test for each gene, using data from 

that gene alone. As most microarray experiments tend 

to have small sample sizes, the estimate of the standard 

errors used in such tests will not be precise. For genes 

with small observed standard errors this value will tend 

to have been underestimated, leading to false positives, 

whereas for genes with large observed standard errors 

this value will tend to have been overestimated, leading 

to false negatives.

For this reason we use moderated t-tests for 

comparisons of mean expressions in two treatment 

groups, and equivalent analyses for more complex 

designs. The process of moderation shrinks the 

standard error for each gene towards the average 

standard error observed across all genes to stabilise 

the analysis. For each gene we obtain a p-value which 

quantifi es the statistical signifi cance of the observed 

difference (technically, the probability of obtaining a test 

statistic as extreme as that observed if there were no 

true effect).

False discovery rate The next step is generally to select 

a cutoff, pc , and declare that we have ‘discovered’ 

evidence of differential expression for all genes with 

p-values smaller than pc . The value of pc can be 

Figure 2a  GAMLSS fit to data from a single microarray, 
showing the log-ratio of the observed colour intensities of 
the two samples for each gene plotted against the 
average of the two log intensities.  The solid red line 
shows  the location model and the blue dashed lines show 
the spread ascribed by the scale model.

Figure 2b  GAMLSS normalised log-ratio plotted against 
mean log-intensity (x). As intended, the majority of the 
normalised data (corresponding to genes not showing 
differential expression) are symmetrically distributed 
around the zero reference line and have homogeneous 
variability over the range of mean intensities.
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thought of as the false positive rate (the probability that 

a gene without differential expression gets incorrectly 

‘discovered’). Because the expression levels of so many 

genes are estimated in each microarray experiment, it 

is important also to know the proportion of discoveries 

which are likely to be false. This is the false discovery 

rate (FDR). The FDR associated with any value of pc 

is estimated by modelling the distribution of p-values. 

Fig. 3 shows an example in which a signifi cance cut-off 

of 5% corresponds to a FDR estimate close to 50%.  

The FDR estimate makes us wary of using 5% as a 

signifi cance cut-off. With this data set, a FDR of 1% 

would need a pc-value of around 0.005%.

Identifi cation of regions controlling expression: eQTL 

analysis Microarrays provide an opportunity to merge 

the analysis of gene expression data with information 

on chromosome position provided by DNA markers. 

Typically such an analysis is carried out using data 

from a segregating population of offspring obtained 

from crossing two inbred parents. The outcome is 

an estimate of the regions of the genome controlling 

expression of each gene on the microarray.  

Figure 3  Observed (histogram) and modelled (solid blue 
line) distributions of significance levels for differential 
expressions of individual genes, together with (inset) the 
modelled relationship between gram false discovery rates 
(FDR) as a function of the significance level used as 
cut-off, pc.
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Often, the locations of many of the genes on the 

microarray are known and the region associated with 

gene expression includes the known gene location 

(referred to as a cis-regulated gene). However, the 

region controlling gene expression is sometimes found 

to be separate from the gene location (referred to as 

trans-regulation).  These sites may be major gene 

regulators, playing a central role in the molecular 

interactions taking place within cells and ultimately 

having effects on many traits exhibited by whole 

organisms. This information is currently being used by 

scientists working on completely sequenced species 

such as Arabidopsis to build gene regulatory networks, 

and should soon become more feasible in crop species 

such as barley.




