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Meteorological variables are essential inputs to
many models in agriculture and hydrology.  In

particular, crop models need them because crop
growth is substantially affected by weather.
Frequently though, weather data will not be available
in the required form.  For instance, the available data
may not be for exactly the right location, for the right
time period or at the right scale, or simply not enough
data may have been collected.  However by develop-
ing appropriate mathematical models from the avail-
able data, we can simulate data of the right form and
quantity. 

Typical requirements for crop models are long series
of daily data, but these are rarely available in the
quantity needed.  For example, 50 years of data might
be required to encompass the range of weather pat-
terns for model prediction.  Alternatively, we might
have data from a restricted network of weather sta-
tions, but want to simulate realistic data for the whole
area containing the stations.  Two examples are dis-

cussed below in some detail.  In the first, we build a
model to simulate time series of many weather vari-
ables simultaneously, taking account of the dependen-
cies between variables.  The second is a rainfall
disaggregation problem, the aim being to produce a
realistic pattern of rainfall at a finer spatial scale than
that recorded.  First we discuss some general issues
about weather variables. 

Weather variables  Most weather variables can be
assumed to be normally distributed, i.e. to have come
from a Gaussian distribution.  Consider, for example,
daily wind speed and relative humidity.  Figure 1
shows histograms of 17 years of daily data collected at
Mylnefield (SCRI), after cyclic seasonal trends have
been removed.  Though some skewness is evident, the
distributions are approximately Gaussian.  Other
weather variables that are approximately Gaussian
include air pressure and daily maximum and mini-
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Figure 1 An illustration of two weather variables that are 
approximately Gaussian distributed: histograms of a) 
relative humidity and b) wind speed, after subtraction of 
seasonal trend.
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Figure 2 An illustration that rainfall is not Gaussian 
distributed, but can be transformed to a censored 
Gaussian variable: a) histogram of hourly rainfall, with 
zero values omitted; b) histogram of rainfall after a 
normalising transformation, with superimposed Gaussian 
distribution (     ) and zero rainfall threshold (     ).
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mum temperatures.  Rainfall, in contrast, is highly
non-Gaussian, most periods having no rain at all and
even restricting to wet periods, the distribution of
rainfall is still very non-Gaussian.  For example,
Figure 2a shows the distribution for hourly rainfall in
the Arkansas-Red Basin River area, USA.  This his-
togram omits the 91% of hours that had no rain at all
and shows that of the wet hours, most have little rain-
fall but the long tail of the distribution allows for the
occasional hours which have very heavy rainfall.

For rainfall simulation, multi-stage approaches have
previously been used, e.g. first simulating a rain/no
rain process and then simulating the amount of rain
for the wet periods from some skewed distribution.
However, there are many advantages of working in a
Gaussian framework. Most importantly, there is much
well-developed theory for Gaussian processes, hence
we can build models based on well-established
methodology. A further advantage of Gaussian vari-
ables is that they are closed under scaling and addi-
tion. So for example, if the distribution of daily totals
of a variable is Gaussian, then so is the distribution of
weekly totals, and so is the distribution of differences
between the daily totals and an overall daily average.

Hence for modelling rainfall, we seek a transformation
to normality, enabling us to use established models for
Gaussian processes.  The method we have developed is
to define a transformation such that for wet periods,
rainfall values are converted to values distributed as
the upper part of a Gaussian distribution, and for dry
periods, zero rainfall corresponds to censored values
from the lower part of the same distribution.  Figure
2b shows how hourly rainfall values are transformed
to match the upper tail of a Gaussian distribution,
whereas the lower part of the distribution corresponds
to the 91% of dry hours.  Thus, a latent Gaussian
process can be thought to have generated the rainfall
data: for values below the threshold, the period is dry
and for values above the threshold the period is wet,
with a transformation applied to generate the actual
rainfall value.  Figure 3 illustrates this, showing both a
realisation of the latent process (Fig. 3a) and the
resulting rainfall (Fig. 3b).

Example 1: A weather generator for several weather
variables
The aim is to generate daily values at a single site for
several weather variables simultaneously, namely mini-
mum and maximum temperatures, radiation levels,
humidity, wind speed and rainfall.  Previous
approaches have either first simulated rainfall and

then conditionally simulated the other variables or,
conversely, simulated the other variables and then
conditionally simulated the rainfall.  By using the
approach described above to transform rainfall, and
applying a simple log-transformation to the radiation
level, all six variables can be assumed Gaussian.
Hence we can use a standard multivariate Gaussian
model to generate values for all variables simultane-
ously, taking into account the dependencies between
the variables. 

The data we model consist of 17 years of daily values
of the six variables recorded at Mylnefield (SCRI).  All
exhibited annual cyclic patterns, which were account-
ed for by fitting finite Fourier series.  This effectively
removes the cyclic aspect of the data and we assume
the resulting series are stationary, a feature assumed in
all basic time series models. 

ARMA (auto-regressive moving average) processes are
well known statistical models for time series.  They
model the value of the variable at time t as a function
of the values of the variable at the previous few time
points, plus a Gaussian-distributed random error.
The steps in model fitting are usually: estimate the
auto-correlations of the time series, i.e. the correlation
of the variable with itself at given time-lags apart;
from these identify the appropriate ARMA model to
use; and finally estimate the ARMA parameters by
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Figure 3 An illustration of the relationship between the 
latent Gaussian process and rainfall: a) simulation of 
three days of hourly data from a Gaussian process (–), 
together with the zero-rainfall threshold (- - -); b) the 
resulting rainfall sequence.
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maximum likelihood. 

Simple ARMA processes model a single variable;
VARMA (vector ARMA) processes model a vector of
variables instead, i.e.  model several variables simulta-
neously.  To fit these models, as well as the auto-cor-
relation of each variable, we need to estimate the
cross-correlations between the variables, i.e. the corre-
lation between one variable and another at a given
time-lag apart.  Because the transformed rainfall vari-
able is censored, the model fitting procedure is slightly
more complex than usual.  Firstly, estimation of the
auto-correlation for the rainfall variable, and for the
cross-correlations involving the rainfall, have to take
into account that the value of the latent Gaussian vari-
able is unknown on dry days.  Therefore, we must
substitute instead an integral over the range within
which it can fall.  Secondly, in estimating the parame-
ters, the usual maximum likelihood approach is
unavailable due to the data being censored.  Instead,
we use a simple least squares approach, minimising
the sum of squares of differences between the estimat-
ed correlations and those predicted by the model. 

After fitting the model, we can then simulate from it.
Here we simulated 100 runs of 17 years of data and
calculated various statistics to compare with the

observed data.  These included monthly means of
weather variables, numbers of wet days and total
amount of rain per month.  In addition, we compared
run lengths of rainy days and of warm, humid days.
Reasonable consistency was seen in all cases, hence
this model can be used to make predictions about the
frequency, duration, etc. of various types of weather
conditions.  For example, conditions that result in the
onset of potato blight have been summarised as “a
temperature in excess of 10°C and relative humidity
above 90% for 11 or more hours in each of two or
more consecutive days”.  Figure 4 shows how well the
model captures the distribution of both this particular
combination of conditions (Fig. 4b) and wet periods
(Fig. 4a). 

Example 2: Rainfall disaggregation
Rainfall data are frequently collected at coarser spatial
scales than required.  Methods are, therefore, needed
for simulation of realistic patterns of rainfall at finer
scales.  We use the same approach described above to
transform the rainfall to a thresholded Gaussian vari-
able, though now we are in a space-time framework
and hence each measurement of rainfall corresponds
to a given area over a given time.

We apply our model to 12 hours of hourly data from
the Arkansas-Red Basin River.  We model the data at
8km x 8km resolution, aggregate to 5 x 5 blocks and
then disaggregate from here, so allowing an assessment
of how well the disaggregation procedure works, since
we can compare disaggregations to the original data at
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Figure 4 An illustration of the agreement between 
Mylnefield data and simulations from our model for two 
summary statistics: a) frequency of wet periods; b) 
frequency of warm, humid periods with duration of two 
or more days.
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Figure 5 The spatial distribution of rainfall in the 
Arkansas-Red Basin River area for one hour, at a) fine 
and b) coarse spatial scales. White indicates zero rainfall, 
through to black indicating the highest. 
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fine scale.  Figure 5 shows one hour of rainfall data,
both at the fine scale we wish to disaggregate to (Fig.
5a), and the coarse, aggregated scale (Fig. 5b).

As in the first example, we need to estimate the corre-
lation of the underlying Gaussian variable, using
methods which take into account that the values are
censored at dry locations/times.  As the problem here
is spatio-temporal, we need to estimate the correlation
over all combinations of lags in two-dimensional space
and time, i.e. in three dimensions.  The pattern of
correlation was judged to be similar in all directions in
space, i.e. the process is spatially isotropic.

We model the correlations as a Gaussian Markov ran-
dom field (GMRF), ‘random field’ just being the term
given to a random variable in several dimensions. A
Markov process in time is one in which the observa-
tion at time t depends only on the immediately pre-
ceding observation(s) and is conditionally
independent of those occurring earlier.  The Markov
random field is the higher dimensional version of this,

so an observation at a certain point in space and time
depends on the values at a (small) neighbourhood of
points around it, but is conditionally independent of
values at locations further away, both in space and
time.  Parameters for the GMRF are estimated in a
similar way as for the ARMA process in the previous
example.  Here weighted least squares are used to
minimise the sum of squares of differences between
the estimated correlations and those predicted by the
fitted model.

Simulation of the fitted process is carried out using
Gibbs sampling, the procedure being to start from
some initial configuration, here the aggregated picture
of Figure 5b, and then simulate updates for all the val-
ues, conditional on the values at neighbouring points.
This is easily done, as the conditional distributions are
multivariate normal, and computationally fast to sim-
ulate.  We update  5 x 5 blocks in turn, constraining
the total rainfall in the block to be consistent with the
observed total for that block. The updating of all sites
forms a complete update – many complete updates are
run and, after each, statistics calculated in order to
judge when the procedure has reached equilibrium.
Once this is achieved, any of the realisations produced
can be regarded as a candidate disaggregation.

Figure 6 shows two simulations of a disaggregation.
Inspection of these and other realisations shows them
to be visually more similar to the original data than
has been achieved by previous methods, and compari-
son of quantities such as lag 1 auto-correlations in
space and time and proportions of wet pixels also
showed good agreement.

Conclusion
We have seen, via two particular examples, that the
modelling of rainfall using a latent Gaussian process is
both mathematically convenient and effective.
Simulations from the fitted models show that realisa-
tions are similar to the data and summary statistics
generally show better agreement than previous, less
elegant models.

Figure 6 An illustration of how a latent Gaussian Markov 
random field can be used to disaggregate the coarse-scale 
rainfall data in Figure 5b: two simulations of a 
disaggregation. 
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