Rise in CO₂ affects microscale soil water relations

Dennis C. Gordon and Paul D. Hallett Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK. Correspondence: <u>Dennis.Gordon@scri.ac.uk</u>

Background

- Research suggests elevated CO₂ will influence a range of soil physical processes.
- Impact caused by greater plant growth and substrates.
- We hypothesise that under elevated CO₂ (1) increased drying and aggregation will enhance transport but (2) greater levels of exudates and biomass will off-set this slightly by increasing very low levels of water repellency.

Doubling CO₂ - A 22nd Century Scenario

Specially constructed plant growth chambers allow for soil and air temperature to be controlled and CO_2 to be doubled.

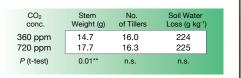
- Barley (Hordeum vulgaris c.v. Pipkin) planted in soil tubes 22 x 48 mm wide and 1.2 m length that were packed to a density 1.2 g cm⁻³.
- Plants grown at 360 ppm (ambient) and 720 ppm CO₂ concentration for 10 weeks.
- Soil irrigated to prescribed water content along entire depth fortnightly and water loss measured.
- Soil dried at 40°C before testing.

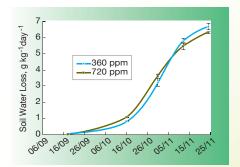
Measuring microscale soil water infiltration and repellency

Microinfiltrometer developed with a tip size of 0.14 mm radius.

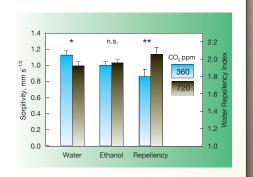
Three parameters are determined:

1) Water Sorptivity – rate of water uptake at the onset of wetting


2) Ethanol Sorptivity – removes impact of repellency, related to pore structure


 Water Repellency – ratio of ethanol to water sorptivity, highly sensitive at low levels

Water repellency measured at 10 different depths down each tube.


Plant Growth and Soil Water Uptake

 Stem weight at harvest was greater under elevated CO₂ but soil water uptake not affected.

Impact of CO₂ on Water Transport and Repellency

- Transport and repellency did not vary with depth.
- Decrease in water sorptivity under elevated CO₂.
- Ethanol sorptivity, which indicates pore structure impact, not affected by CO₂.
- Indicates higher water repellency, which was significantly greater at 720 ppm.

Conclusions

Doubling of CO₂:

1) Increased plant growth but did not influence plant-water relations.

2) Decreased water sorptivity because of greater water repellency.

3) Did not influence ethanol sorptivity.

Future research needs to measure repellency over a wider range of soil water contents, and determine the impact of different plants and projected changes to soil and atmosphere temperatures.

Acknowledgements

The Scottish Crop Research Institute receives grant-in-aid from the Scottish Executive Environment and Rural Affairs Department