Temporal host-parasite relationships of the wild rabbit, *Oryctolagus cuniculus* (L.) as revealed by stable isotope analyses

R. Neilson ^{1*}, B. Boag ¹ & G. Hartley ²

¹ Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA

² Scottish Agricultural Science Agency, 82 Craigs Road, East Craigs, Edinburgh, EH12 8NJ

Introduction

Natural abundances of stable isotopes are effectively an integrated record of assimilated elements such as C and N, and as such, are a better representation of the recent biochemical and dietary past of an organism than traditional snapshot methods, e.g. gut content analyses. Changes in the ratios of "C/"C and "N/"N (expressed as δ^{19} C and δ^{16} N) in animal tissue are indicative of dietary sources and trophic grouping, respectively. Although parasites are an integral component of any trophic system, their inclusion in foodweb studies is infrequent (Marcogliese & Cone, 1997). Similarly, the utilisation of stable isotope techniques in host-parasite studies is rare. Using stable isotopes, initial data from Boag *et al.* (1998)

suggested that different trophic relationships existed between parasitic intestinal nematodes and parasitic cestodes and their host, the European rabbit.

Aim

The objective of this study is to report for the first time, the temporal trophic dynamics of a host-parasite system using the natural abundances of δ^{19} C and δ^{19} N.

Material and Methods

Ten wild rabbits were captured using box traps from a study site located in the Scottish Borders on six separate occasions (January, March, May, July, September and November) during a 12-month period. Samples of fur, muscle, stomach contents and faeces were collected from the rabbits and when present, parasitic cestodes (*Mosgovoyia pectinata* and *Cittotaenia denticulata*) and parasitic nematodes (*Graphidium strigosum, Passalurus ambiguus* and *Trichostrongylus retortaeformis*). Samples were processed and analysed by continuous-flow isotope ratio mass spectrometry (CF-IRMS) as described by Boag *et al.* (1998).

Results

δ¹⁵N

Muscle and stomach content δ¹⁶N varied little (p=0.365 and p=0.829, respectively) during the sampling period (Fig. 1a, c). In contrast, faeces, fur and vegetation δ¹⁶N exhibited statistically significant temporal trends (Figs. 1b, d and 2a). Vegetation showed the greatest temporal variation (p=0.021). Faeces (p=0.045; Fig. 1b) and fur (p=0.000; Fig. 1d) also exhibited significant ¹⁶N temporal variability.

The three species of intestinal nematode were only found on the first three sampling dates indicative of their known biology when their intensity is greatest (e.g. *G. strigosum*) or when they are prevalent. Consequently, it was not possible to statistically test any observed isotopic temporal differences.

Intestinal parasitic nematode δ^{15} N exhibited discordant temporal patterns (Table 1). The *cestode C. denticulata* (p=0.988) exhibited no δ^{15} N temporal patterns whereas *M. pectinata*, exhibited significant (p=0.013) temporal variation in δ^{15} N (Fig. 2b).

$\delta^{13}C$

Muscle (p=0.000), faeces (p=0.000), vegetation (p=0.000) and stomach content (p=0.036) δ^{13} **C** varied temporally during the sampling period (Figs. 1a-c and 2a). In contrast, fur δ^{19} C was uniform throughout the sampling period (Fig. 1d).

Both cestode species became less ¹³C-depleted during the sampling period (p=0.000) although the temporal trend of both species differed (Fig. 2b). During the period January-May, intestinal nematode δ^{13} C showed no obvious temporal trends (Table 1).

	Graphidium strigosum		Passalurus ambiguus			Trichostrongylus retortaeforr		
	δ ^m C	δ" "N	δ ^{ra} C	δ" "N		δ ^m C	δ ³⁸ N	
January	-26.7 (0.42)	7.5 (0.61)	-28.7 (0.05)	9.0 (0.31)		-27.4 (0.18)	7.3 (0.36	
March	-26.6 (0.25)	8.7 (0.40)	-28.5 (0.10)	8.9 (0.25)		-27.5 (0.15)	6.8 (0.40	
May	-26.5 (0.15)	10.2 (0.19)	-27.9 (n/d)	8.9 (n/d)		-27.7 (0.29)	5.6 (0.32	
Mean	-26.6 (0.16)	9.4 (0.45)	-28.6 (0.15)	9.0 (0.25)		-27.5 (0.15)	6.8 (0.39	

Conclusions

- Host faeces and stomach content were isotopically indistinct as a likely consequence of coprophagy.
- Relative to their host, parasitic nematodes were ¹⁵N-enriched consistent with an increase in trophic level status.

rigure 3. Seasonail mean o C vs o N for ai samples. Cd = Cittotenia denticulats; Gs = Graphidium strigosum; Mp = Mosgovoyi eectinata; Pa = Passalurus ambiguus and Tr = Trichostrongylus retortaeformis. In some instances error bars are smaller that

Marcia Harris

8

140.00

contents

20 40 60 80 10

Gs

- Conversely, cestodes were ¹⁵N-depleted.
- Isotopically, each parasite reflected a species-specific relationship with their rabbit host.

Trophic interactions

Both rabbit tissues, muscle and fur, were ¹⁵N-enriched, respectively, relative to the host (rabbit) diet (C3-grass). Similarly, stomach contents and faeces were ¹⁵N-enriched relative to dietary material (Fig. 3). Compared to rabbit muscle, levels of ¹⁵N-enrichment differed among intestinal nematode species: *G. strigosum* (5.7 ‰), *P. ambiguus* (5.3 ‰) and *T. retortaeformis* (3.1 ‰)(Table 1, Fig. 3). In contrast, the parasitic cestodes were less ¹⁵N-enriched than rabbit muscle and as with the nematodes this differed among cestode species, *C. denticulata* (2.7 ‰) and *M. pectinata* (1.5 ‰).

Mean faeces and stomach content δ^{19} C were similar to vegetation δ^{19} C (Fig. 3). Overall, both rabbit tissues (muscle and fur) sampled were less "C-depleted than the dietary material (Fig. 3). Unlike δ^{19} N, mean δ^{19} C for *G. strigosum* and *T. retortaeformis* was similar to that for host muscle (Fig. 3). In contrast, *P. ambiguous* was more "C-depleted (Fig. 3). Similarly, both cestode species were more "C-depleted than host muscle (Fig. 3).

References

Boag, B., Neilson, R., Robinson, D, Scrimgeour, C. M. & Handley, L. L. (1998). *Isotopes in Environmental and Health Studies* **34**, 81-85.

Marcogliese, D. J. & Cone, D. K. (1997). *Trends in Ecology* and Evolution **12**, 320-325.

