Comparative and Functional Genomics Identifies Major Differences Between Genomic Islands in Soft Rotting Enterobacterial Plant Pathogens^[1,2]

Leighton Pritchard¹, Gunnhild Takle^{1,2}, Hui Liu¹, Sonia Humphris¹, Lucy Moleleki^{1,3}, Eduard

Venter^{1,3}, Ron Wheatley¹, Jacques Schrenzel⁴, Peter Hedley¹, Paul Birch¹ and Ian Toth¹.

- ¹SCRI, Errol Road, Invergowrie, Dundee DD2 5DA
- ² Bioforsk, Norwegian Institute for Agricultural and Environmental Research, N-1432 Ås, Norway
- ³ University of Johannesburg, Aukland Park, 2006, South Africa
- ⁴ Genomic Research Laboratory, Infectious Diseases Service, Geneva University Hospitals and the University of Geneva, Switzerland

Background *

The soft rotting enterobacterial plant pathogens Pectobacterium atrosepticum (Pba), Pectobacterium carotovorum (Pcc) and Dickeya dadantii (Dda) are closely-related but differ in their host ranges, geographical distributions, and survival in the environment. Each bacterium causes disease by a similar mechanism, namely the production of plant cell wall degrading enzymes, but the molecular interactions and processes that distinguish between the course of disease in each case are largely unknown. We investigated the extent of differential horizontal gene transfer in these pathogens, using computational and microarray comparative genomic hybridisation (M-CGH) techniques to identify genomic islands in Pba strain SCRI1043 that are absent or divergent in Pcc strain SCRI193 and/or Dda strain 3937. Such islands may make a contribution to Pba1043-specific phenotypes, niche adaptation or pathogenicity.

M-CGH Hybridisation

Figure 1:

Plots of hybridisation strengths for Dda gDNA hybridised to the Pba microarray, under three experimental conditions: Dda-only (red) and Dda with gDNA from two reference organisms (Pba and Pcc). Two major peaks are seen indicating strong and weak Dda hybridisation. The Dda-only weak hybridisation peak is shifted with respect to experiments in which reference gDNA was present.

sequence identity is not a good predictor of

Figure 2:

Summary

- The prediction of divergent or absent CDS in related organisms using M-CGH, on the basis of hybridisation strength alone, is not very reliable (table 1, figure 2). Figure 1 also indicates that the presence of gDNA from a reference organism modifies hybridisation strength in M-CGH experiments

hybridisation.

- The use of a first-order HMM improved the predictive abilities of the M-CGH experiments significantly, in comparison to prediction on the basis of hybridisation strength alone (table 1)

- Using the HMM constructed from Dda3937 hybridisation, we identified 197 islands of contiguous genes on the Pba1043 genome that are predicted to be divergent from Dda3937. Several of these islands contain genes encoding proteins with functions expected to be relevant to niche-adaptation or host specificity, such as lipopolysaccharide synthesis, coronafacic acid synthesis, sugar transport, polysaccharide synthesis and secretion, and putative phenazine antibiotic synthesis.

- We also used the HMM to predict 80 contiguous islands on the Pba1043 genome that are divergent in or absent from Pcc193. Several of these islands are also suggestive of niche- or functional-adaptive processes, mostly but not always exhibiting overlap with the Dda3937-divergent islands, such as coronafacic acid synthesis, iron transport, polysaccharide synthesis and export, colicin, phenazine biosynthesis, and nitrogen fixation.

- Ten candidate divergent or absent CDS from related species were chosen for validation by Southern hybridisation, and the HMM was found to perform similarly to the in silico estimates based on a known genome sequence (table 2).

It is anticipated that differences between the genomes of related bacteria will reflect adaptation to their particular environmental niche; differences between the genomes of Pba, Pcc and Dda species should reflect the differences between their infection strategies and host interactions. The Pba1043 and the Dda3937 genomes have been sequenced and annotated, permitting direct sequence comparisons, but no such sequence is available for Pcc species. We developed a microarray representing 4450 CDS from the Pba1043 genome, which enables M-CGH of unsequenced Pcc with the Pba1043 sequence by challenge of the microarray with Pcc genomic DNA (gDNA). This comparison reveals which sequences in the Pba1043 genome are likely to be present or divergent/absent in Pcc. We validated the predictive method against the sequenced strain Dda3937, and predictions for CDS of interest were validated by Southern hybridisation.

A HMM-Based Predictive Model

We used a combination of microarray hybridisation intensity from the Pba1043:Dda3937 array comparison, and the presence or absence of putative orthologues (RBH) from a direct genome comparison, ordered on the Pba1043 genome sequence, to construct a first-order hidden Markov model (HMM) to predict individual genes that are expected to be divergent between Dda3937 and Pba1043. Use of the HMM improved predictive performance, when compared to predictions of divergence based on hybridisation intensity (Table 1). This model was used to predict CDS in Pcc193 that are likely to be divergent from Pba1043 (Figure 3).

hybridisation

only

0.39-0.42

0.852-0.858

0.56-0.58

0 58-0 61

Figure 3:

GenomeDiagram^[3] image of predictions of divergent CDS in Pcc193 (purple blocks) and Dda3937 (green blocks) compared to a region of the Pba1043 genome, using the derived HMM. Predictions correspond well to known HGT events (red blocks), and to to the set of the set o alien_hunter^[4]; outer red blocks).

Table 1:

HMM

0.62

0.855

0.769

Predictive performance of a range of models based on optimal hybridisation score cutoff, and performance of the derived HMM at similar sensitivity, on the Dda3937 genome, using predicted RBH as the reference.

Species / strains	Host	cfa6	cfa7	1487	1488	2106	2109	ehpF	nifA	nifJ	048
Pectobacterium atrosepticum											
1039, 1043 (Sco); 1140, 1143, 1147 (Nor); 41 (Net); 1086 (Can); 13, 31 (USA); 44 (Aus); 84, 87 (Per); 1054 (Isr); 4 (Zim)	Potato	+	+	+	+	*	*	+	+	*	+
9 (UK)	Tomato	+	+	+	+	+	+	+	+	+	+
45 (USA)	Sugar beet	+	+	+	+	+	+	+	+	+	
1140 (Nor)	Potato	+	+	-	-	+	+	+	+	+	
*5 (Tan)	Schizanthus	-	-	-	-	-	+	-	-	+	
*27 (USA)	Rocket larkspur	-	-	-	-	-	+		-	-	
Pectobacterium carotovorum subsp. carotovorum			1					1	1		
Prediction (Pcc193)						+					
212 (UK) ; 108 (Fin); 136 (USA); 177 (Per); 112 (Jap)	Potato	-	-	-	-	-	•	-	-	-	
205 (Mex); 120 (Uga)	Sunflower	-	-	-	-	-	-	-	-	-	
193 (USA)	Potato	-	-			?	· • ·			-	
111 (lsr)	Tomato	-	-	-	-	-	+	-	-	-	
290 (USA): 132 (Jap): 348 (Isr)	Carrot	-	-	-	-	-	+		-	-	
116, 235 (Sco)	Swede	-	-	-	-	-	+		-	-	
122 (Tan)	Tomato	-	-	-	-	+	· •		-	-	
101 (USÁ)	Tobacco	-	-	-	-	-	+	-	-	-	
318 (Sco)	Swede	-	-	-	-	-	-		+	+	
121 (Jam)	Sugar cane	-	-	+	+	-	-	-	-	-	
Dickeya species			1					1	1		
Prediction (Dda3937)		-				+			+	+	
4052 (UK); 4044, 4000 (Net); 419, 4039 (Per)	Potato	-	-							-	
403, 4018, 4071 (USA); 413 (Egy)	Maize	-	-	-	-	-	-	-	-	-	
4033, 4064 (Jap)	Rice	-	-	-	-	-	-	-	-	-	
4063' 4080 (EC16 - Fra)	St Paulia	-	-	-	-	-	-	-	-	-	
4073 (UK)	Carnation	-	-	-	-	-	-	-	-	-	
4078 (Egy)	Maize	-	-	-	-	-	-	-	+	-	
4081 (3937 - Fra)	St Paulia	-		+	-			-	+	-	
409 (Den)	Carnation	-	-	+	-	-	-	-	-	-	
4074 (Cer)	Diffenbachia		+	-	-	-	-	-	-		

Table 2:

*

pecificity

ensitivity

prrect prediction rat

o nocitivo rato

Validation of the HMM predictor by Southern hybridisation of ten CDS in 18 strains each of Pba, Pcc and Dickeya species. Strains used for M-CGH are indicated in bold face. There is appreciable strain variation across each species, but for the strains used to challenge the array, three false positives and two false negatives are seen, for twenty predictions. Treating the Pcc193 and Dda3937 hybridisations as proxies for all strains of the corresponding species, the overall correct prediction rate in this experiment is 86/360=0.76. The two Pba strains marked with an asterisk (*) were subsequently reclassified as Pcc.

References

[1] Pritchard et al. (in preparation) "Comparative and functional genomic analysis of major difference of the second seco ectobacterium atrosepticum 1043, Pectobacterium carotovorum 193 and Dickeya dadantii 3937." [2] Pritchard et al. (in preparation) "A method for HMM-based identification of horizontally-acquired islands using microarray comparative

[3] Pritchard et al. (2006) "GenomeDiagram: a Python package for the visualization of large-scale genomic data" Bioinformatics, 22, 616-617 [4] Vernikos & Parkhill (2006) "Interpolated variable order motifs for identification of horizontally acquired DNA", Bioinformatics, 22, 2196-2203

