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Analysis Pipeline

Understanding bacterial gene expression regulation is a major challenge. Using a training set of known transcription factor binding site (TFBS) sequences, we aim to 
predict the genome locations of previously unknown binding sites in bacterial plant pathogen genomes. Modelling the training set pattern is nontrivial, due to the 
heterogeneity of sequences to which a typical transcription factor (TF) binds. Here we present a supervised learning based pipeline to identify the locations of regula-
tory motifs in bacterial genomes.  We use Escherichia coli K12 as a well-characterised model organism where the locations of most regulatory motifs are already known.  

Abstract

The pipeline shown below represents schemati-
cally the iterative process of model refinement.  
This pipeline is implemented in a set of Python 
modules, incorporating cross-validation and 
IVOM implementations.
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A common problem found when predicting regulatory motifs is a high false discovery rate (FDR).  We address this issue by evaluating methods to reduce the FDR using 
biologically-relevant information. Two main biological features are described here: the distance between a regulatory motif and its adjacent downstream gene 
(referred to as d2cds),  and base composition of regulatory motifs. The former (d2cds) is used to weight alternative model output scores using the probability of observ-
ing the predicted d2cds distances for a validated set of TFBS [1]. The second method uses an Interpolated Variable Order Motifs (IVOM) approach [2]. We adapt this 
approach for use with shorter motifs, weighting base compositions of mono-, di-, and tri-nucleotides. 

Introduction

Refining Training Sets Improves Model Performance

Prediction sensitivity (Sn) increases with information content (IC) of the 
alignment used to generate the models (figure 1). Sequence heteroge-
neity leads to models with low IC and resulting poor predictors (Sn <0.5). 
The performance of models may be improved by restricting the TFBS 
training set on the basis 
of sequence identity. 
An example for CRP 
binding sites is shown 
in figure 2. By 
restricting the training 
set to CRP TFBS 
sharing a minimum of 
90% identity, the Sn 
increases to 0.77, from 
Sn=0.4, when no 
restriction is in place.

Figure 1: Sensitivity of HMM-only prediction 
for distinct TFBS (TF are indicated with numbers)
versus the information content normalised per 
multiple sequence alignment (MSA) column.
Bullet sizes reflect training set sizes. Figure 2: Sensitivity and precision for HMMs based  

on TFBS of CRP TF, with and without restricting the 
training set based on sequence identity.
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TFBS-CDS Distance (d2cds)
The distribution of distances between known binding 
sites and their downstream genes is used to weight the 
scores from alternative models (figure 3). The model 
score and the probability of the associated d2cds, are 
combined using a joint probability as shown in 
equation 1.

Equation 1: Joint probability that sequence s belongs to the 
set of promoters (S) and that s lies at a distance, ds,  from 
its adjacent downstream gene, where ds is in the interval 
(x-a, x+a).

The IVOM approach [2] is used to distinguish between true and false positive predictions on the basis of the 
divergence of weighted mono- di- and tri-nucleotide compositions from compositions observed in a reference 
sequence set. Figure 4 shows the distribution of IVOM-based entropy distance measures for a selection of distinct 
TFBS in E.coli, compared to the reference set of all TFBS in E.coli. Clearly, we expect the scores for real TFBS to 
be close to zero. Figure 5 shows the modulus entropy score separation between TFBS (i.e. promoter) and both 
coding (CDS) / intergenic (IG) regions. ROC plots (figure 6) show IVOM-
based model performance much better than random when comparing scores 
observed for TFBS to CDS and IG regions of same lengths (60-65 nt).

Interpolated Variable Order Motifs (IVOM)

Figure 3: Observed frequency of occurrence of TFBS 
by distance to the adjacent downstream gene (d2cds).
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Figure 4: Boxplots of the distribution of 
IVOM-based entropy scores for a 
selection of distinct E.coli TFBS.

Figure 5: Gaussian fit of absolute 
frequency of promoter, CDS and 
IG regions vs. |scores| (sequence 
length is restricted to [60-65] nucleotides).

Figure 6: ROC plot of IVOM-based 
entropy scores for promoter and coding 
regions, and promoter and intergenic 
regions (bootstrap 1000 times). 


